GW190521 formation via three-body encounters in young massive star clusters

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY(2021)

引用 16|浏览3
暂无评分
摘要
GW190521 is the most massive binary black hole (BBH) merger observed to date, and its primary component lies in the pair-instability (PI) mass gap. Here, we investigate the formation of GW190521-like systems via three-body encounters in young massive star clusters. We performed 2 x 10(5) simulations of binary-single interactions between a BBH and a massive >= 60 M-circle dot black hole (BH), including post-Newtonian terms up to the 2.5 order and a prescription for relativistic kicks. In our initial conditions, we take into account the possibility of forming BHs in the PI mass gap via stellar collisions. If we assume that first-generation BHs have low spins, similar to 0.17 per cent of all the simulated BBH mergers have component masses, effective and precessing spin, and remnant mass and spin inside the 90 per cent credible intervals of GW190521. Seven of these systems are first-generation exchanged binaries, while five are second-generation BBHs. We estimate a merger rate density R-GW19052(1) similar to 0.03 Gpc(-3) yr(-1) for GW190521-like binaries formed via binary-single interactions in young star clusters. This rate is extremely sensitive to the spin distribution of first-generation BBHs. Stellar collisions, second-generation mergers and dynamical exchanges are the key ingredients to produce GW190521-like systems in young star clusters.
更多
查看译文
关键词
gravitational waves, black hole physics, methods: numerical, stars: black holes, stars: kinematics and dynamics, galaxies: star clusters: general
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要