Electric and Magnetic Field Devices for Stimulation of Biological Tissues.

Journal of visualized experiments : JoVE(2021)

引用 0|浏览0
暂无评分
摘要
Electric fields (EFs) and magnetic fields (MFs) have been widely used by tissue engineering to improve cell dynamics such as proliferation, migration, differentiation, morphology, and molecular synthesis. However, variables such stimuli strength and stimulation times need to be considered when stimulating either cells, tissues or scaffolds. Given that EFs and MFs vary according to cellular response, it remains unclear how to build devices that generate adequate biophysical stimuli to stimulate biological samples. In fact, there is a lack of evidence regarding the calculation and distribution when biophysical stimuli are applied. This protocol is focused on the design and manufacture of devices to generate EFs and MFs and implementation of a computational methodology to predict biophysical stimuli distribution inside and outside of biological samples. The EF device was composed of two parallel stainless-steel electrodes located at the top and bottom of biological cultures. Electrodes were connected to an oscillator to generate voltages (50, 100, 150 and 200 Vp-p) at 60 kHz. The MF device was composed of a coil, which was energized with a transformer to generate a current (1 A) and voltage (6 V) at 60 Hz. A polymethyl methacrylate support was built to locate the biological cultures in the middle of the coil. The computational simulation elucidated the homogeneous distribution of EFs and MFs inside and outside of biological tissues. This computational model is a promising tool that can modify parameters such as voltages, frequencies, tissue morphologies, well plate types, electrodes and coil size to estimate the EFs and MFs to achieve a cellular response.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要