Defect Structures In (001) Zincblende Gan/3c-Sic Nucleation Layers

JOURNAL OF APPLIED PHYSICS(2021)

引用 11|浏览18
暂无评分
摘要
The defect structure of zincblende GaN nucleation layers grown by metalorganic vapor-phase epitaxy on 3C-SiC/Si (001) was investigated by high-resolution scanning transmission electron microscopy. Perfect dislocations, partial dislocations, and stacking faults are present in the layers. Perfect dislocations are identified as 60 degrees mixed-type and act as misfit dislocations to relieve the compressive lattice mismatch strain in GaN. Stacking faults are mainly bounded by 30 degrees Shockley partial dislocations and rarely by Lomer-Cottrell partial dislocations, both of which are able to relieve the compressive lattice mismatch strain in the layer. We propose that the stacking faults and their partial dislocations originate from the dissociation of perfect dislocations present in the zincblende GaN layer and by direct nucleation of partial dislocations loops from the surface. These are the two main mechanisms that lead to the final defect structure of the zincblende GaN nucleation layers.
更多
查看译文
关键词
GaN Power Devices
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要