Efficient degradation of 2,4-dichlorophenol in water by sequential electrocatalytic reduction and oxidation with a Pd-MWCNTs/Ni-foam electrode

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH(2023)

引用 0|浏览8
暂无评分
摘要
Our previous study indicated excellent dechlorination efficiency and phenol conversion rate in the electrocatalytic reduction of 2,4-dichlorophenol (2,4-DCP) with a Pd-MWCNTs/Ni-foam electrode; it is deserved to investigate whether this electrode can efficiently degrade phenol in electro-Fenton oxidation (EFO) process and realize the effective mineralization of 2,4-DCP in aqueous solution. In this work, the sequential electrocatalytic reduction and oxidation of 2,4-DCP were studied after examining phenol degradation in the EFO process. The results showed that the removal efficiency of 0.31 mM phenol could reach 96.76% after 90-min degradation with the rate constant of 0.0367 min −1 , and hydroxy radicals (·OH) were the main active species in the EFO process. In the sequential electrocatalytic reduction and oxidation processes, the removal efficiencies of 2,4-DCP, phenol, and total organic carbon (TOC) reached 99.72%, 97.07%, and 61.45%, respectively. The possible degradation mechanism of 2,4-DCP was proposed through monitoring the reaction products, and the stability and reusability of the electrode were also examined. This study suggested that 2,4-DCP in wastewater can be effectively mineralized to realize its efficient degradation through the sequential electrocatalytic reduction and oxidation.
更多
查看译文
关键词
Pd-MWCNTs/Ni-foam electrode,2,4-Dichlorophenol,Sequential electrocatalytic reduction and oxidation,Mineralization,Electro-Fenton oxidation,Degradation mechanism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要