谷歌浏览器插件
订阅小程序
在清言上使用

A Fluid Model of a Traffic Network with Information Feedback and Onramp Controls

Applied mathematics & optimization/Applied mathematics and optimization(2021)

引用 0|浏览14
暂无评分
摘要
Unlimited access to a motorway network can, in overloaded conditions, cause a loss of throughput. Ramp metering, by controlling access to the motorway at onramps, can help avoid this loss of throughput. The queues that form at onramps are dependent on the metering rates chosen at the onramps, and these choices affect how the capacities of different motorway sections are shared amongst competing flows. In this paper we perform an analytical study of a fluid, or differential equation, model of a linear network topology with onramp queues. The model allows for adaptive arrivals, in the sense that the rate at which external traffic enters the queue at an onramp can depend on the current perceived delay in that queue. The model also includes a ramp metering policy which uses global onramp queue length information to determine the rate at which traffic enters the motorway from each onramp. This ramp metering policy minimizes the maximum delay over all onramps and produces equal delay times over many onramps. The paper characterizes both the dynamics and the equilibrium behavior of the system under this policy. While we consider an idealized model that leaves out many practical details, an aim of the paper is to develop analytical methods that yield interesting qualitative insights and might be adapted to more general contexts. The paper can be considered as a step in developing an analytical approach towards studying more complex network topologies and incorporating other model features.
更多
查看译文
关键词
Dynamic traffic network model,Ramp metering,Global delay minimization,Adaptive arrivals,Feedback signals,Equilibrium states,Long run behavior,90B10,90B20,93B52,37N35
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要