Manipulating Crystallization Kinetics Of Conjugated Polymers In Nonfullerene Photovoltaic Blends Toward Refined Morphologies And Higher Performances

MACROMOLECULES(2021)

引用 17|浏览13
暂无评分
摘要
The introduction of solvent additives has become a general approach in optimizing the active layer morphology in organic photovoltaics (OPV) to achieve high power conversion efficiency. It is of general interest to understand the mechanism of how additives optimize the thin-film nanostructure formation such as crystallization kinetics and phase separation. In the current manuscript, state-of-the-art nonfullerene bulk heterojunction blends, PM6:IT-4F mixture, are used in a slot-die coating experiment. The 1,8-octanedithiol (DIO)-aided fabrication leads to a significant increase in the power conversion efficiency (PCE) from 10.11 to 12.67%. Exciton dissociation and carrier transport have also been improved, largely associated with morphology improvement. Time-resolved crystallization kinetics during PM6:IT-4F film formation under different processing conditions was studied by in situ grazing-incidence wide-angle X-ray scattering (GIWAXS), in which a detailed polymer fibril morphology formation was seen. The Johnson-Mehl-Avrami-Kolmogorov (JMAK) crystallization analysis affords insights that the addition of the DIO additive in a small amount would not only increase the nucleation rate during the nucleation and growth stage but also introduce secondary fibril crystal perfection via burst nucleation-mediated crystallization to a grain boundary-induced crystallization stage change. These observations can be of general interest to the OPV community in manipulating the printed solar cell morphology and efficiency toward the commercial application.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要