A predictive modeling tool for damage analysis and design of hydrogen storage composite pressure vessels

International Journal of Hydrogen Energy(2021)

引用 18|浏览1
暂无评分
摘要
In this paper, a predictive modeling tool is developed for damage analysis and design of hydrogen (H2) storage composite pressure vessels. It integrates micromechanics of matrix cracking into a continuum damage mechanics (CDM) description for damage evolution, and three-dimensional (3D) finite element (FE) modeling of the vessel structural response. At the scale of the composite layer (mesoscale), the temperature-dependent stiffness reduction law in terms of the damage variable for transverse matrix cracking is computed using an Eshelby-Mori-Tanaka approach (EMTA) for the initial composite thermoelastic properties and a self-consistent model for the stiffness reduction as a function of the damage variable. While transverse matrix cracking obeying a damage evolution relation can progressively evolve from an initiation to a saturation state, fiber failure is predicted by a micromechanical fiber rupture criterion that accounts for the fiber strength and matrix stress that can be computed within EMTA. The implementation of this integrated multiscale modeling model into a 3D FE formulation enables damage analysis and design of H2 storage composite pressure vessels. The developed tool is illustrated through 3D damage analyses of a cryogenically compressed H2 storage vessel model subjected to thermomechanical loadings to investigate effects of the helical layer fiber orientation and loading scenario on damage development, vessel integrity and burst pressure.
更多
查看译文
关键词
Hydrogen storage pressure vessel,Micromechanics,Continuum damage mechanics,Transverse matrix cracking,Fiber rupture
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要