Smart Wound Care: Ultra‐Conformable Ionic Skin with Multi‐Modal Sensing, Broad‐Spectrum Antimicrobial and Regenerative Capabilities for Smart and Expedited Wound Care (Adv. Sci. 9/2021)

Advanced Science(2021)

引用 2|浏览7
暂无评分
摘要
While rapid wound healing is essential yet challenging, there is also an unmet need for functional restoration of sensation. Inspired by natural skin, an ultra-conformable, adhesive multi-functional ionic skin (MiS) with multi-modal sensing capability is devised for smart and expedited wound care. The base of MiS is a unique skin-like, conductive and self-adaptive adhesive polyacrylamide/starch double-network hydrogel (PSH) and self-powered, flexible, triboelectric sensor(s) is integrated on top of PSH for multi-tactile sensing. MiS could enhance wound contraction, collagen deposition, angiogenesis, and epidermis formation in a full-thickness skin defect wound model in vivo, while significantly inhibiting the biofilm formation of a wide range of microorganisms. MiS also exhibits multi-modal sensing capability for smart and instant therapeutics and diagnostics, including skin displacement or joint motion, temperature, pressure and tissue exudate changes of wound bed, and locally releasing drugs in a pH-responsive manner. More importantly, MiS could restore the skin-mimicking tactile sensing function of both touch location and intensity, and thus could be used as a human-machine interface for accurate external robotic control. MiS demonstrates a new comprehensive paradigm of combining wound diagnosis and healing, broad-spectrum anti-microbial capability and restoration of multi-tactile sensing for the reparation of severe wound.
更多
查看译文
关键词
antimicrobial, gel&#8208, point adhesive hydrogel (GPAH), ionic skin, smart wound care, tactile sensing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要