谷歌浏览器插件
订阅小程序
在清言上使用

Mechanisms of Angiogenic Incompetence in Hutchinson-Gilford Progeria Via Downregulation of Endothelial NOS.

Aging Cell(2021)

引用 9|浏览16
暂无评分
摘要
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder with features of accelerated aging. The majority of HGPS cases are caused by a de novo point mutation in the LMNA gene (c.1824C>T; p.G608G) resulting in progerin, a toxic lamin A protein variant. Children with HGPS typically die from coronary artery diseases or strokes at an average age of 14.6 years. Endothelial dysfunction is a known driver of cardiovascular pathogenesis; however, it is currently unknown how progerin antagonizes normal angiogenic function in HGPS. Here, we use human iPSC-derived endothelial cell (iPSC-EC) models to study angiogenesis in HGPS. We cultured normal and HGPS iPSC-ECs under both static and fluidic culture conditions. HGPS iPSC-ECs show reduced endothelial nitric oxide synthase (eNOS) expression and activity compared with normal controls and concomitant decreases in intracellular nitric oxide (NO) level, which result in deficits in capillary-like microvascular network formation. Furthermore, the expression of matrix metalloproteinase 9 (MMP-9) was reduced in HGPS iPSC-ECs, while the expression of tissue inhibitor metalloproteinases 1 and 2 (TIMP1 and TIMP2) was upregulated relative to healthy controls. Finally, we used an adenine base editor (ABE7.10max-VRQR) to correct the pathogenic c.1824C>T allele in HGPS iPSC-ECs. Remarkably, ABE7.10max-VRQR correction of the HGPS mutation significantly reduced progerin expression to a basal level, rescued nuclear blebbing, increased intracellular NO level, normalized the misregulated TIMPs, and restored angiogenic competence in HGPS iPSC-ECs. Together, these results provide molecular insights of endothelial dysfunction in HGPS and suggest that ABE could be a promising therapeutic approach for correcting HGPS-related cardiovascular phenotypes.
更多
查看译文
关键词
ABE,aging,endothelial cells,eNOS,progeria
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要