Selecting Surface-Enhanced Raman Spectroscopy Flavors For Multiplexed Imaging Applications: Beyond The Experiment

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2021)

引用 4|浏览6
暂无评分
摘要
Multiplexing capabilities and sensitivity of surface-enhanced Raman spectroscopy (SERS) nanoparticles (NPs) are strongly dependent on the selected Raman reporter. These Raman-active molecules are responsible for giving each batch of SERS NPs its unique spectral fingerprint. Herein, we studied four types of SERS NPs, namely, AuNPs labeled with trans-1,2-bis(4-pyridyl)ethylene (BPE), 4,4'-bis(mercaptomethyl)biphenyl (BMMBP), 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol (PODT), and 5-(4-pyridyl)-1H-1,2,4-triazole-3-thiol (PTT), and demonstrated that the best level of theory could be chosen based on inner products of DFT-calculated and experimental Raman spectra. We also calculated the theoretical spectra of these Raman reporters bound to Au-20 clusters to interrogate how SERS enhancement would affect their spectral fingerprint. Importantly, we found a correlation between B3LYP-D3 calculated and experimental enhancement factors, which opens up an avenue toward predicting which Raman reporters could offer improved sensitivity. We observed 0.5 and 3 fM limits of detection for BMMBP- and PTT-labeled 60 nm AuNPs, respectively.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要