Human BIN1 isoforms grow, maintain, and regenerate excitation-contraction couplons in adult rat and human stem cell-derived cardiomyocytes

CARDIOVASCULAR RESEARCH(2022)

引用 8|浏览4
暂无评分
摘要
Aims In ventricular myocytes, transverse-tubules (T-tubules) are instrumental for excitation-contraction (EC)coupling and their disarray is a hallmark of cardiac diseases. BIN1 is a key contributor to their biogenesis. Our study set out to investigate the role of human BIN1 splice variants in the maintenance and regeneration of EC-coupling in rat adult ventricular myocytes and human-induced pluripotent stem cell-derived cardiac myocytes (hiPS-CMs). Methods and results In heart samples from healthy human donors expression patterns of five BIN1 splice variants were identified. Following viral transduction of human BIN1 splice variants in cellular models of T-tubular disarray, we employed high-speed confocal calcium imaging and CaCLEAN analysis to identify functional EC-coupling sites (couplons) and T-tubular architecture. Adult rat ventricular myocytes were used to investigate the regeneration after loss and maintenance of EC-coupling while we studied the enhancement of EC-coupling in hiPS-CMs. All five human BIN1 splice variants induced de-novo generation of T-tubules in both cell types. Isoforms with the phosphoinositide-binding motif (PI) were most potent in maintenance and regeneration of T-tubules and functional EC-coupling in adult rat myocytes. In hiPSC-CMs, BIN1 variants with PI-motif-induced de novo generation of T-tubules, functional couplons and enhanced calcium handling. Conclusion BIN1 is essential for the maintenance, regeneration, and de novo generation of functional T-tubules. Isoforms with PI-motifs appeared as particulalrly potent. These T-tubules trigger the development of functional couplons resulting in enhanced calcium handling.
更多
查看译文
关键词
Adult cardiomyocyte, BIN1, EC-coupling, T-tubules, hiPSC-CMs, Cardiomyopathy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要