Adaptive optics imaging with a pyramid wavefront sensor for visual science

arxiv(2021)

引用 0|浏览12
暂无评分
摘要
The pyramid wavefront sensor (P-WFS) has replaced the Shack-Hartmann (SH-) WFS as sensor of choice for high performance adaptive optics (AO) systems in astronomy because of its flexibility in pupil sampling, its dynamic range, and its improved sensitivity in closed-loop application. Usually, a P-WFS requires modulation and high precision optics that lead to high complexity and costs of the sensor. These factors limit the competitiveness of the P-WFS with respect to other WFS devices for AO correction in visual science. Here, we present a cost effective realization of AO correction with a non-modulated PWFS and apply this technique to human retinal in vivo imaging using optical coherence tomography (OCT). P-WFS based high quality AO imaging was, to the best of our knowledge for the first time, successfully performed in 5 healthy subjects and benchmarked against the performance of conventional SH-WFS based AO. Smallest retinal cells such as central foveal cone photoreceptors are visualized and we observed a better quality of the images recorded with the P-WFS. The robustness and versatility of the sensor is demonstrated in the model eye under various conditions and in vivo by high-resolution imaging of other structures in the retina using standard and extended fields of view.
更多
查看译文
关键词
adaptive optics,wavefront sensor,imaging,pyramid
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要