First-Principles Calculation Of The Optical Rotatory Power Of Periodic Systems: Application On Alpha-Quartz, Tartaric Acid Crystal, And Chiral (N,M)-Carbon Nanotubes

JOURNAL OF CHEMICAL THEORY AND COMPUTATION(2021)

引用 8|浏览2
暂无评分
摘要
The self-consistent coupled-perturbed (SC-CP) method in the CRYSTAL program has been adapted to obtain electromagnetic optical rotation properties of chiral periodic systems based on the calculation of the magnetic moment induced by the electric field. Toward that end, an expression for the magnetic transition moment is developed, which involves an appropriate electronic angular momentum operator. This operator is forced to be hermitian so that the chiroptical properties are real. In our formulation, the trace of the optical rotatory power matrix is gauge-origin-invariant as long as the electric dipole transition matrix elements are obtained using the velocity (rather than position) operator. On the other hand, the component along the optic axis is invariant in general for uniaxial and biaxial crystals. Under the same conditions, these properties also do not depend on the so-called missing integers that occur in the treatment of the electric dipole moment of quasi-one-dimensional periodic systems or the analogue of missing integers for the case of higher dimensionality. Tests on a model H2O2 polymer confirm the formalism and, as desired, show that the calculated properties are independent of the size and definition of the unit cell. In addition, an empirical relation to a finite oligomer gauge-including atomic orbital (GIAO) calculation is found. Applications, with comparison to experiment, are carried for alpha-quartz, tartaric acid crystal, and carbon nanotubes. Future developments of this initial approach to chiroptical properties in the solid state are noted.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要