Potential for phytoremediation of neonicotinoids by nine wetland plants.

Chemosphere(2021)

引用 11|浏览7
暂无评分
摘要
Broad-spectrum insecticides such as neonicotinoids tend to accumulate and detrimentally impact natural ecosystems. Accordingly, we aimed to assess the neonicotinoid phytoremediation abilities of nine wetland plant species commonly used in constructed wetland systems: Acorus calamus, Typha orientalis, Arundo donax, Thalia dealbata, Canna indica, Iris pseudacorus, Cyperus alternifolius, Cyperus papyrus and Juncus effusus. We assessed their removal of six neonicotinoids and explored the mechanisms responsible for the observed removal in a 28-day experiment. The planted systems effectively removed the neonicotinoids, with removal efficiencies of 9.5-99.9%. Compared with the other neonicotinoids, imidacloprid, thiacloprid and acetamiprid were most readily removed in the planted systems. C. alternifolius and C. papyrus exhibited the best removal performance for all six neonicotinoids. Based on our assessment of mass balance, the main removal processes were biodegradation and plant accumulation. Plants can enhance neonicotinoid removal through enhancing biodegradation. The differences in transport and accumulation behaviors may be related to plant species and physicochemical properties of neonicotinoids. Further research is merited on the toxicity of neonicotinoids to plants and microorganisms and the metabolic pathways by which neonicotinoids are broken down in wetland systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要