Morphological Classification Of Compact And Extended Radio Galaxies Using Convolutional Neural Networks And Data Augmentation Techniques

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY(2021)

引用 12|浏览4
暂无评分
摘要
Machine-learning techniques have been increasingly used in astronomical applications and have proven to successfully classify objects in image data with high accuracy. The current work uses archival data from the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) to classify radio galaxies into four classes: Fanaroff-Riley Class I (FRI), Fanaroff-Riley Class II (FRII), Bent-Tailed (BENT), and Compact (COMPT). The model presented in this work is based on Convolutional Neural Networks (CNNs). The proposed architecture comprises three parallel blocks of convolutional layers combined and processed for final classification by two feed-forward layers. Our model classified selected classes of radio galaxy sources on an independent testing subset with an average of 96 per cent for precision, recall, and F1 score. The best selected augmentation techniques were rotations, horizontal or vertical flips, and increase of brightness. Shifts, zoom, and decrease of brightness worsened the performance of the model. The current results show that model developed in this work is able to identify different morphological classes of radio galaxies with a high efficiency and performance.
更多
查看译文
关键词
methods: data analysis, methods: statistical, radio continuum: galaxies
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要