谷歌浏览器插件
订阅小程序
在清言上使用

VIZSLA-Versatile Ice Zigzag Sublimation Setup for Laboratory Astrochemistry.

REVIEW OF SCIENTIFIC INSTRUMENTS(2021)

引用 4|浏览4
暂无评分
摘要
In this article, a new multi-functional high-vacuum astrophysical ice setup, VIZSLA (Versatile Ice Zigzag Sublimation Setup for Laboratory Astrochemistry), is introduced. The instrument allows for the investigation of astrophysical processes both in a low-temperature para-H2 matrix and in astrophysical analog ices. In the para-H2 matrix, the reaction of astrochemical molecules with H atoms and H+ ions can be studied effectively. For the investigation of astrophysical analog ices, the setup is equipped with various irradiation and particle sources: an electron gun for modeling cosmic rays, an H atom beam source, a microwave H atom lamp for generating H Lyman-α radiation, and a tunable (213-2800 nm) laser source. For analysis, an FT-IR (and a UV-visible) spectrometer and a quadrupole mass analyzer are available. The setup has two cryostats, offering novel features for analysis. Upon the so-called temperature-programmed desorption (TPD), the molecules, desorbing from the substrate of the first cryogenic head, can be mixed with Ar and can be deposited onto the substrate of the other cryogenic head. The efficiency of the redeposition was measured to be between 8% and 20% depending on the sample and the redeposition conditions. The well-resolved spectrum of the molecules isolated in an Ar matrix serves a unique opportunity to identify the desorbing products of a processed ice. Some examples are provided to show how the para-H2 matrix experiments and the TPD-matrix-isolation recondensation experiments can help understand astrophysically important chemical processes at low temperatures. It is also discussed how these experiments can complement the studies carried out by using similar astrophysical ice setups.
更多
查看译文
关键词
laboratory astrochemistry,ice
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要