Global gene expression and chromatin accessibility of the peripheral nervous system in animal models of persistent pain

The Journal of Pain(2021)

引用 4|浏览0
暂无评分
摘要
Background Efforts to understand genetic variability involved in an individual’s susceptibility to chronic pain support a role for upstream regulation by epigenetic mechanisms. Methods To examine the transcriptomic and epigenetic basis of chronic pain that resides in the peripheral nervous system, we used RNA-seq and ATAC-seq of the rat dorsal root ganglion (DRG) to identify novel molecular pathways associated with pain hypersensitivity in two well-studied persistent pain models induced by chronic constriction injury (CCI) of the sciatic nerve and intra-plantar injection of complete Freund’s adjuvant (CFA) in rats. Results Our RNA-seq studies identify a variety of biological process related to synapse organization, membrane potential, transmembrane transport, and ion binding. Interestingly, genes that encode transcriptional regulators were disproportionately downregulated in both models. Our ATAC-seq data provide a comprehensive map of chromatin accessibility changes in the DRG. A total of 1123 regions showed changes in chromatin accessibility in one or both models when compared to the naïve and 31 shared differentially accessible regions (DAR)s. Functional annotation of the DARs identified disparate molecular functions enriched for each pain model which suggests that chromatin structure may be altered differently following sciatic nerve injury and hind paw inflammation. Motif analysis identified 17 DNA sequences known to bind transcription factors in the CCI DARs and 33 in the CFA DARs. Two motifs were significantly enriched in both models. Conclusions Our improved understanding of the changes in chromatin accessibility that occur in chronic pain states may identify regulatory genomic elements that play essential roles in modulating gene expression in the DRG.
更多
查看译文
关键词
Pain, Epigenetics, ATAC-seq, RNA-seq, Chromatin accessibility, Dorsal root ganglion, Nerve injury, Inflammation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要