Mechanochemistry-induced biaxial compressive strain engineering in MXenes for boosting lithium storage kinetics

Nano Energy(2021)

引用 19|浏览9
暂无评分
摘要
Strain modulation can endow electrochemical materials with promising mechano-electrochemical coupling owing to its adjustable characteristics, which will unlock great potential for realizing high-performance energy storage. MXenes offer outstanding lithium storage performances due to their exceptional conductivity, excellent mechanical properties, and large interlayer spaces for ion intercalation, however an undesirable issue of sluggish kinetics caused by the restacking of MXene nanosheets in electrodes is not well addressed. Here, we demonstrate an extremely effective strategy to resolve this issue by creating strain in Ti3C2Tx MXene via mechanochemistry (MC) method to maximize ion-transfer kinetics for lithium-ion batteries (LIBs). Strain states in Ti3C2Tx MXene, namely out-of-plane tension and corresponding in-plane biaxial compression, are comprehensively assessed through X-ray diffraction, Raman spectroscopy, and extended X-ray absorption fine structure spectroscopy. Diverse experimental characterizations and density functional theory calculations both reveal that the mechanochemistry-induced strained Ti3C2Tx (MC-Ti3C2Tx) MXene exhibits significantly decreased lithium diffusion barrier, which correlates directly to the observed fast ion-transfer kinetics. As expected, MC-Ti3C2Tx electrode delivers a high discharge capacity (380.5 mAh g−1 at 0.1 A g−1) and superior rate capability, outperforming most of previously reported Ti3C2Tx. More importantly, with the remarkably enhanced ion-transfer kinetics, MC-Ti3C2Tx electrode exhibits outstanding lithium storage performances spanning a wide temperature range (40 °C to − 20 °C). This work paves a novel way of strain engineering of MXenes for effectively enhancing diffusion kinetics in LIBs.
更多
查看译文
关键词
MXene,Strain engineering,Biaxial compression,Ion-transfer kinetics,Li-ion batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要