Complexation Of C-Functionalized Cyclams With Copper(Ii) And Zinc(Ii): Similarities And Changes When Compared To Parent Cyclam Analogues

INORGANIC CHEMISTRY(2021)

引用 7|浏览2
暂无评分
摘要
Herein, we report a comprehensive coordination study of the previously reported ligands cyclam, CB-cyclam, TMC, DMC, and CB-DMC and of their C-functional analogues, cyclam-E, CB-cyclam-E, TMC-E, DMC-E, and CB-DMC-E. This group of ligands includes cyclam, cross-bridged cyclams, their di- or tetramethylated derivatives, and the analogues bearing an additional hydroxyethyl group on one beta-N position of the ring. The Cu(II) and Zn(II) complexes of these macrocycles have been highlighted previously for the biological interest, but the details of their structures in the solid state and in solution remained largely unexplored. In particular, we analyzed the impact that adding noncoordinating N-methyl and C-hydroxyethyl functionalities has in the structures of the complexes. All the Cu(II) and Zn(II) complexes were synthesized and investigated using single crystal X-ray diffraction and NMR, electronic absorption, and EPR spectroscopies, along with DFT studies. Dissociation kinetics experiments in acidic conditions and electrochemical studies were also performed. Special attention was paid to analyze the different configurations present in solution and in the solid state, as well as the impact of the C-appended hydroxyethyl group on the coordination behavior. Various ratios of the trans-I, trans-III, and cis-V configurations have been observed depending on the degree of N-methylation and the presence of the ethylene cross-bridge.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要