Developmental conditions have intergenerational effects on corticosterone levels in a passerine

Hormones and Behavior(2021)

引用 6|浏览7
暂无评分
摘要
The developmental environment can have powerful, canalizing effects that last throughout an animal's life and even across generations. Intergenerational effects of early-life conditions may affect offspring phenotype through changes in the hypothalamic-pituitary-adrenal axis (HPA). However, such effects remain largely untested in altricial birds. Here, we tested the impact of maternal and paternal developmental conditions on offspring physiology and morphology in the zebra finch (Taeniopygia guttata). Specifically, we exposed one generation (F1) to elevated corticosterone (CORT) during development and quantified the impact on offspring (F2) phenotype. We predicted that intergenerational effects would be apparent through effects of parental developmental treatment on offspring body mass, growth, body condition, body composition, and CORT levels. We found an intergenerational impact on CORT levels, such that F2 birds reared by CORT-treated fathers had higher baseline CORT than F2 birds reared by control fathers. This result shows the potential for intergenerational effects on endocrine function, resulting from developmental conditions. We found no effect of parental treatment on F2 body mass, size, or body condition, but we found that the body mass and tarsus length for offspring and parent were correlated. Our study demonstrates the subtle effects of developmental conditions across generations and highlights the importance of distinguishing between maternal and paternal effects when studying intergenerational effects, especially for species with biparental care.
更多
查看译文
关键词
Developmental stress,Glucocorticoids,Body condition,Transgenerational effects,Zebra finch
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要