谷歌浏览器插件
订阅小程序
在清言上使用

Surface engineering of copper sulfide-titania-graphitic carbon nitride ternary nanohybrid as an efficient visible-light photocatalyst for pollutant photodegradation

Journal of Colloid and Interface Science(2021)

引用 11|浏览2
暂无评分
摘要
Advanced photocatalyst is a key for photocatalytic water purification in the environmental pollutant remediation. In this study, graphitic carbon nitride (g-CN) modified by CuS and TiO2 ternary nanohybrid (CuS-TiO2-g-CN) with close interfacial contact among CuS, TiO2 and g-CN was fabricated through a facile and green method. Compared to the binary g-CN-based counterparts, the CuS-TiO2-g-CN possesses multiple photo-generated charge transfers owing to the synergistic action of CuS, TiO2 and g-CN. And hence the separation efficiency of photo-generated electron-hole pairs can be improved for the CuS-TiO2-g-CN. The optical and photoelectrochemical measurements prove that the CuS-TiO2-g-CN has narrower band gap energy and higher transient photocurrent density than those of g-CN and TiO2-g-CN. Therefore, the CuS-TiO2-g-CN shows notably higher photocatalytic activity and stability towards the degradation of Rhodamine B (RhB) than g-CN and TiO2-g-CN under visible-light irradiation. Moreover, a possible visible-light photocatalytic mechanism of CuS-TiO2-g-CN for degrading RhB was also proposed on the basis of the experimental results and literature reports. (c) 2021 Elsevier Inc. All rights reserved.
更多
查看译文
关键词
Graphitic carbon nitride,Titania,Copper sulfide,Ternary nanohybrid,Photocatalyst
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要