Triapine Analogues And Their Copper(Ii) Complexes: Synthesis, Characterization, Solution Speciation, Redox Activity, Cytotoxicity, And Mr2 Rnr Inhibition

INORGANIC CHEMISTRY(2021)

引用 8|浏览3
暂无评分
摘要
Three new thiosemicarbazones (TSCs) HL1-HL3 as triapine analogues bearing a redox-active phenolic moiety at the terminal nitrogen atom were prepared. Reactions of HL1-HL3 with CuCl2 center dot 2H(2)O in anoxic methanol afforded three copper(II) complexes, namely, Cu(HL1)Cl-2 (1), [Cu(L-2)Cl] (2'), and Cu(HL3)Cl-2 (3), in good yields. Solution speciation studies revealed that the metal-free ligands are stable as HL1-HL3 at pH 7.4, while being air-sensitive in the basic pH range. In dimethyl sulfoxide they exist as a mixture of E and Z isomers. A mechanism of the E/Z isomerization with an inversion at the nitrogen atom of the Schiff base imine bond is proposed. The monocationic complexes [Cu(L1-3)](+) are the most abundant species in aqueous solutions at pH 7.4. Electrochemical and spectroelectrochemical studies of 1, 2', and 3 confirmed their redox activity in both the cathodic and the anodic region of potentials. The one-electron reduction was identified as metal-centered by electron paramagnetic resonance spectroelectrochemistry. An electrochemical oxidation pointed out the ligand-centered oxidation, while chemical oxidations of HL1 and HL2 as well as 1 and 2' afforded several two-electron and four-electron oxidation products, which were isolated and comprehensively characterized. Complexes 1 and 2' showed an antiproliferative activity in Colo205 and Colo320 cancer cell lines with half-maximal inhibitory concentration values in the low micromolar concentration range, while 3 with the most closely related ligand to triapine displayed the best selectivity for cancer cells versus normal fibroblast cells (MRC-5). HL1 and 1 in the presence of 1,4-dithiothreitol are as potent inhibitors of mR2 ribonucleotide reductase as triapine.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要