Enzyme-instructed Supramolecular Assemblies Promote Intracellular Boron Accumulation for Boron Neutron Capture Therapy
Nanotechnology(2021)
摘要
Selective accumulation of boron agents in cancer cells is of critical importance for BNCT. Here we involve enzyme-instructed supramolecular assembly (EISA) to facilitate the accumulation of a typical boron agent borylphenylalanine (BPA) in cancer cells. By covalently conjugating BPA to the phosphorylated assembly precursor, the boron-bearing precursors undergo phosphatase-catalyzed dephosphorylation to yield assembly molecules, which then self-assemble to form nanomaterials. Due to the up-regulated phosphatase activity of cancer cells, kinetic preference allows the EISA to accumulate boron in HeLa cells selectively. Interestingly, by attaching BPA on the backbone or side-chain of precursor, the boron-bearing isomers show different assembly propensity with time-dependent morphology change, which leads to the differentiated accumulation of boron inside cells. Overall, the optimized boron-bearing assembly precursor could significantly improve the boron accumulation compared with BPA in cancer cells. In this study, we have demonstrated a convenient method to introduce boron agents to cancer cells. We envision that the EISA-mediated accumulation of boron will be helpful in the design of boron agents to facilitate BNCT treatment.
更多查看译文
关键词
enzyme,self-assembly,peptide,cancer,boron neutron capture therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要