Conservative DG method for the micro-macro decomposition of the Vlasov–Poisson–Lenard–Bernstein model

Journal of Computational Physics(2022)

引用 0|浏览2
暂无评分
摘要
The micro-macro (mM) decomposition approach is considered for the numerical solution of the Vlasov–Poisson–Lenard–Bernstein (VPLB) system, which is relevant for plasma physics applications. In the mM approach, the kinetic distribution function is decomposed as f=E[ρf]+g, where E is a local equilibrium distribution, depending on the macroscopic moments ρf=∫Refdv=〈ef〉R, where e=(1,v,12v2)T, and g, the microscopic distribution, is defined such that 〈eg〉R=0. We aim to design numerical methods for the mM decomposition of the VPLB system, which consists of coupled equations for ρf and g. To this end, we use the discontinuous Galerkin (DG) method for phase-space discretization, and implicit-explicit (IMEX) time integration, where the phase-space advection terms are integrated explicitly and the collision operator is integrated implicitly. We give special consideration to ensure that the resulting mM method maintains the 〈eg〉R=0 constraint, which may be necessary for obtaining (i) satisfactory results in the collision dominated regime with coarse velocity resolution, and (ii) unambiguous conservation properties. The constraint-preserving property is achieved through a consistent discretization of the equations governing the micro and macro components. We present numerical results that demonstrate the performance of the mM method. The mM method is also compared against a corresponding DG-IMEX method solving directly for f.
更多
查看译文
关键词
Kinetic equation,Hyperbolic conservation laws,Discontinuous Galerkin,Implicit-explicit,Lenard–Bernstein,Vlasov–Poisson
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要