谷歌浏览器插件
订阅小程序
在清言上使用

Repair of Peripheral Nerve Defects by Nerve Grafts Incorporated with Extracellular Vesicles from Skin-Derived Precursor Schwann Cells.

Acta Biomaterialia(2021)

引用 33|浏览18
暂无评分
摘要
Our previous studies have shown that extracellular vesicles from skin-derived precursor Schwann cells (SKP-SC-EVs) promote neurite outgrowth of sensory and motor neurons in vitro . This study was aimed at generating an artificial nerve graft incorporated with SKP-SC-EVs to examine in vivo effects of SKP-SC-EVs on peripheral nerve regeneration. Here SKP-SC-EVs were isolated and then identified by morphological observation and phenotypic marker expression. Following co-culture with SCs or motoneurons, SKP-SCEVs were internalized, showing the capability to enhance SC viability or motoneuron neurite outgrowth. In vitro , SKP-SC-EVs released from Matrigel could maintain cellular uptake property and neural activity. Nerve grafts were developed by incorporating Matrigel-encapsulated SKP-SC-EVs into silicone conduits. Functional evaluation, histological investigation, and morphometric analysis were performed to compare the nerve regenerative outcome after bridging the 10-mm long sciatic nerve defect in rats with our developed nerve grafts, silicone conduits (filled with vehicle), and autografts respectively. Our developed nerve grafts significantly accelerated the recovery of motor, sensory, and electrophysiological functions of rats, facilitated outgrowth and myelination of regenerated axons, and alleviated denervation-induced atrophy of target muscles. Collectively, our findings suggested that incorporation of SKP-SC-EVs into nerve grafts might represent a promising paradigm for peripheral nerve injury repair. Statement of significance Nerve grafts have been progressively developed to meet the increasing requirements for peripheral nerve injury repair. Here we reported a design of nerve grafts featured by incorporation of Matrigelencapsulated extracellular vesicles from skin-derived precursor Schwann cells (SKP-SC-EVs), because SKPSC-EVs were found to possess in vitro neural activity, thus raising the possibility of cell-free therapy. Our developed nerve grafts yielded the satisfactory outcome of nerve grafting in rats with a 10-mm long sciatic nerve defect, as evaluated by functional and morphological assessments. The promoting effects of SKP-SC-EVs-incorporating nerve grafts on peripheral nerve regeneration might benefit from in vivo biological cues afforded by SKP-SC-EVs, which had been released from Matrigel and then internalized by residual neural cells in sciatic nerve stumps. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
Skin-derived precursor Schwann cells,Extracellular vesicles,Nerve grafts,Sciatic nerve defect,Peripheral nerve injury repair
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要