Montmorillonite promoted photodegradation of amlodipine in natural water via formation of surface complexes

CHEMOSPHERE(2022)

引用 9|浏览4
暂无评分
摘要
The photolysis of amlodipine (AML) as a ubiquitous pollutant in natural water has been extensively studied. Montmorillonite (MMT), a major component of suspended particles in surface aquifers, plays key roles in the natural transportation and transformation of organic contaminants in the environment. However, literature has scarcely focused on whether and how suspended particles affect the phototransformation of AML. This study systematically investigated the phototransformation behavior of AML in MMT suspensions under simulated sunlight. The results obtained showed that MMT significantly enhanced the photolysis of AML. The photo degradation of AML in 0.05 g/L MMT suspension reached 92.2 % after 3 h irradiation under the simulated sunlight. The photodecomposition followed the pseudo-first-order kinetic with a rate constant of 0.803 h(-1) in the presence of 0.05 g/L MMT, which is about 19 times larger than that in the absence of MMT (0.0421 h(-1)). Further mechanistic investigation suggested that MMT accelerated the photolysis of AML by the formation of surface complexes between cationic amino groups of AML and the negatively charged sites on MMT surface, which greatly facilitated light absorption and electron transfer for the production of cationic radical AML(+).. Meanwhile, the hydroxyl radicals generated by irradiated MMT also played an important role in the photocatalytic degradation of AML. The probable photodegradation pathways of AML in MMT suspension further supported the proposed mechanisms. The toxicity evaluation of phototransformation products of AML with ECOSAR program indicated that photolysis could reduce its potential threats. These findings reveal an important and previously overlooked phototransformation mechanisms of AML in the presence of MMT clays, which is of importance in assessing the environmental fate of other similar organic contaminants.
更多
查看译文
关键词
Amlodipine,Montmorillonite,Photodegradation,Products pathways,Toxicity evaluation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要