Direct characterization of cis -regulatory elements and functional dissection of complex genetic associations using HCR–FlowFISH

NATURE GENETICS(2021)

引用 26|浏览15
暂无评分
摘要
Effective interpretation of genome function and genetic variation requires a shift from epigenetic mapping of cis -regulatory elements (CREs) to characterization of endogenous function. We developed hybridization chain reaction fluorescence in situ hybridization coupled with flow cytometry (HCR–FlowFISH), a broadly applicable approach to characterize CRISPR-perturbed CREs via accurate quantification of native transcripts, alongside CRISPR activity screen analysis (CASA), a hierarchical Bayesian model to quantify CRE activity. Across >325,000 perturbations, we provide evidence that CREs can regulate multiple genes, skip over the nearest gene and display activating and/or silencing effects. At the cholesterol-level-associated FADS locus, we combine endogenous screens with reporter assays to exhaustively characterize multiple genome-wide association signals, functionally nominate causal variants and, importantly, identify their target genes.
更多
查看译文
关键词
Biological techniques,Functional genomics,Genetics,Biomedicine,general,Human Genetics,Cancer Research,Agriculture,Gene Function,Animal Genetics and Genomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要