谷歌浏览器插件
订阅小程序
在清言上使用

Spontaneous Symmetry Breaking in a Coherently Driven Nanophotonic Bose-Hubbard Dimer

Physical review letters(2022)

引用 15|浏览13
暂无评分
摘要
We report on the first experimental observation of spontaneous mirror symmetry breaking (SSB) in coherently driven-dissipative coupled optical cavities. SSB is observed as the breaking of the spatial or mirror Z2 symmetry between two symmetrically pumped and evanescently coupled photonic crystal nanocavities, and manifests itself as random intensity localization in one of the two cavities. We show that, in a system featuring repulsive boson interactions (U > 0), the observation of a pure pitchfork bifurcation requires negative photon hopping energies (J < 0), which we have realized in our photonic crystal molecule. SSB is observed over a wide range of the two-dimensional parameter space of driving intensity and detuning, where we also find a region that exhibits bistable symmetric behavior. Our results pave the way for the experimental study of limit cycles and deterministic chaos arising from SSB, as well as the study of nonclassical photon correlations close to SSB transitions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要