Extended-Spectrum Beta-Lactamase-Producing And Mcr-1-Positive Escherichia Coli From The Gut Microbiota Of Healthy Singaporeans

APPLIED AND ENVIRONMENTAL MICROBIOLOGY(2021)

引用 10|浏览17
暂无评分
摘要
Multidrug-resistant (MDR) Escherichia coil strains that carry extendedspectrum ,6-lactamases (ESBLs) or colistin resistance gene mcr-1 have been identified in the human gut at an increasing incidence worldwide. In this study, we isolated and characterized MDR Enterobacteriaceae from the gut microbiota of healthy Singaporeans and show that the detection rates for ESBL-producing and mcr-positive Enterobacteriaceae are 25.7% (28/109) and 7.3% (8/109), respectively. Whole-genome sequencing analysis of the 37 E. coli isolates assigned them into 25 sequence types and 6 different phylogroups, suggesting that the MDR E. coli gut colonizers are highly diverse. We then analyzed the genetic context of the resistance genes and found that composite transposons played important roles in the cotransfer of bla(CTX)(-M)(-15/55) and cinrS1, as well as the acquisition of mcr-1. Furthermore, comparative genomic analysis showed that 12 of the 37 MDR E. coli isolates showed high similarity to ESBL-producing E. coil isolates from raw meat products in local markets. By analyzing the core genome single nucleotide polymorphisms (SNPs) shared by these isolates, we identified possible clonal transmission of an MDR E. coli clone between human and raw meat, as well as a group of highly similar Incl2 (Delta) plasmids that might be responsible for the dissemination of mcr-1 in a much wider geographic region. Together, these results suggest that antibiotic resistance may be transmitted between different environmental settings by the expansion of MDR E. coli clones, as well as by the dissemination of resistance plasmids.IMPORTANCE The human gut can harbor both antibiotic-resistant and virulent Escherichia coli which may subsequently cause infections. In this study, we found that multidrug-resistant (MDR) E. coli isolates from the gut of healthy Singaporeans carry a diverse range of antibiotic resistance mechanisms and virulence factor genes and are highly diverse. By comparing their genomes with the extended-spectrum beta-lactamase (ESBL)-producing E. coli isolates from raw meat products that were sampled at a similar time from local markets, we detected an MDR E. coli clone that was possibly transmitted between humans and raw meat products. Furthermore, we also found that a group of resistance plasmids might be responsible for the dissemination of colistin resistance gene mcr-1 in Singapore, Malaysia, and Europe. Our findings call for better countermeasures to block the transmission of antibiotic resistance.
更多
查看译文
关键词
ESBL-producing bacteria, Enterobacteriaceae, antibiotic resistance, colistin resistance, human gut microbiota
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要