Processing Optimization And Toxicological Evaluation Of "Lead-Free" Piezoceramics: A Knn-Based Case Study

MATERIALS(2021)

引用 6|浏览6
暂无评分
摘要
Due to the ever-increasing limitations of the use of lead-based materials, the manufacturing of lead-free piezoceramics with competitive piezoelectric properties and established nontoxicity is considered a priority for the scientific and industrial community. In this work, a lead-free system based on sodium potassium niobate (KNN), opportunely modified with MgNb2O6 (MN), was prepared through a combination of a mechanochemical activation method and air sintering, and its toxicity was evaluated. The effect of the mechanical processing on the microstructure refinement of the processed powders was established by X-ray diffraction and the average crystallite size content of the Nb2O5 species was evaluated. The experimental evidence was rationalized using a phenomenological model which permitted us to obtain the amount of powder processed at each collision and to optimize the activation step of the pre-calcined reagents. This influenced the final density and piezoresponse of the as-sintered pellets, which showed optimal properties compared with other KNN systems. Their toxicological potential was evaluated through exposure experiments to the pulverized KNN-based pellets, employing two widely used human and environmental cellular models. The in vitro assays proved, under the selected conditions, the absence of cytotoxicity of KNN-bases systems here studied.
更多
查看译文
关键词
lead-free piezoceramics, sodium potassium niobate, processing, toxicity assays, X-ray diffraction, mechanochemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要