3D microfluidic tumor models for biomimetic engineering of glioma niche and detection of cell morphology, migration and phenotype change.

Talanta(2021)

引用 8|浏览1
暂无评分
摘要
In this work, an integrated 3-dimensional microfluidic device was developed for simulation of the immune microenvironment of glioma niche through the co-culture of three kinds of related cells. Glioma cells, endothelial cells and macrophages were co-cultured together in the microfluidic device, spatially separated by the design of a coffer structure and the use of hydrogel. This platform enabled separate monitoring of the morphology change and migration of cells, as well as molecular interactions between different kinds of cells. Tumor cells were found to exhibit EMT like shape change to become thinner, and sensitive perception and taxis toward macrophages. The influence of tumor cells and the microenvironment, macrophages would be re-educated and the phenotype could be changed from M1 (tumor-suppressive) to M2 (tumor-supportive), which could be validated through cytokines analysis. This 3D microfluidic tumor model provides a powerful tool for studying the biological properties of glioma niche.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要