谷歌浏览器插件
订阅小程序
在清言上使用

Numerical simulation and analysis of effects of individual differences on the field distribution in the human brain with electromagnetic pulses

SCIENTIFIC REPORTS(2021)

引用 4|浏览28
暂无评分
摘要
The blood–brain barrier (BBB) opening induced by electromagnetic pulses (EMPs) may be a drug delivery strategy of central nervous system (CNS) diseases. However, the mechanism of EMP-induced BBB opening is still ambiguous. Previous studies have shown the relation between the external field and the extent of BBB permeation (referred to as the effect), while the connection between the internal field and the effect remains unknown. Here, the influence of individual differences on the field distribution in the human brain with EMPs is investigated, the dielectric parameters of the specific anthropomorphic mannequin (SAM) and structural parameters of the spherical brain are adjusted, and the field distribution in the brain illuminated by EMPs at the frequency range of 0–0.5 GHz is simulated based on the Computer Simulation Technology (CST) Studio Suite. The results show that the average electric field in the brain is about 1/100–1/5 of the incident field within the studied frequency range, individual differences have little effect on the field distribution in the human brain; and thus, it is reliable to establish the connection between the internal field and the effect, which is of great theoretical significance for further study of the mechanism of an EMP on the brain.
更多
查看译文
关键词
Biological physics,Biophysics,Computational biophysics,Computational models,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要