Mechanical Stirring Synthesis Of 1d Electrode Materials And Designing Of Pyramid/Inverted Pyramid Interlocking For Highly Flexible And Foldable Li-Ion Batteries With High Mass Loading

ACS APPLIED MATERIALS & INTERFACES(2021)

引用 1|浏览1
暂无评分
摘要
Flexible and foldable Li-ion batteries (LIBs) are presently attracting immense research interest for their potential use in wearable electronics but are still limited to electrodes with very small mass loading, low bending/folding endurance, and poor electrochemical stability during repeated bending and folding movements. Moreover, one-dimensional (1D) structured electrode materials have shown excellent electrochemical performance but are still restricted by the high cost and complicated fabrication process. Here, we present a very simple yet novel approach for fabricating extra-long Li4Ti5O12 (LTO) and LiCoO2 (LCO) nanofiber precursors by directly stirring the reagents in an atmospheric vessel. In addition, we present multilayer pyramid/inverted pyramid interlocking inside the LTO and LCO nanofiber films as well as between films and current collectors, which can create strengthened interfacial bonding like a zipper and tangentially disperse the strains generated during folding through the pyramidal planes and edges, leading to the realization of thick-film electrodes with outstanding electrochemical stability during folding movements. The foldable LIBs that are assembled with LTO and LCO nanofiber electrodes at a practical level of mass loading (14.9-19.4 mg cm(-2)) can maintain 102% of the initial capacity after 15 000 times of fully folding (180 degrees) motions.
更多
查看译文
关键词
Li-ion battery, flexible and foldable electronic device, mechanical stirring, 1D electrode material, high mass loading
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要