Individual voxel-based morphometry adjusting covariates in multiple system atrophy.

Parkinsonism & related disorders(2021)

引用 3|浏览41
暂无评分
摘要
INTRODUCTION:This study aimed to evaluate whether novel individual voxel-based morphometry adjusting covariates (iVAC), such as age, sex, and total intracranial volume, could increase the accuracy of a diagnosis of multiple system atrophy (MSA) and enable the differentiation of MSA from Parkinson's disease (PD). METHODS:We included 53 MSA patients (MSA-C: 33, MSA-P: 20), 53 PD patients, and 189 healthy controls in this study. All participants underwent high-resolution T1-weighted imaging (WI) and T2-WI with a 3.0-T MRI scanner. We evaluated the occurrence of significant atrophic findings in the pons/middle cerebellar peduncle (MCP) and putamen on iVAC and compared these findings with characteristic changes on T2-WI. RESULTS:On iVAC, abnormal findings were observed in the pons/MCP of 96.2% of MSA patients and in the putamen of 80% of MSA patients; however, on T2-WI, they were both observed at a frequency of 60.4% in MSA patients. On iVAC, all but one MSA-P patient (98.1%) showed significant atrophic changes in the pons/MCP or putamen. By contrast, 69.8% of patients with MSA showed abnormal signal changes in the pons/MCP or putamen on T2-WI. iVAC yielded 95.0% sensitivity and 96.2% specificity for differentiating MSA-P from PD. CONCLUSION:iVAC enabled us to recognize the morphological characteristics of MSA visually and with high accuracy compared to T2-WI, indicating that iVAC is a potential diagnostic screening tool for MSA.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要