Three-Compartment-Breast (3cb) Prior-Guided Diffuse Optical Tomography Based On Dual-Energy Digital Breast Tomosynthesis (Dbt)

BIOMEDICAL OPTICS EXPRESS(2021)

引用 7|浏览6
暂无评分
摘要
Diffuse optical tomography (DOT) is a non-invasive functional imaging modality that uses near-infrared (NIR) light to measure the oxygenation state and the concentration of hemoglobin. By complementarily using DOT with other anatomical imaging modalities, physicians can diagnose more accurately through additional functional image information. In breast imaging, diagnosis of dense breasts is often challenging because the bulky fibrous tissues may hinder the correct tumor characterization. In this work, we proposed a three-compartment-breast (3CB) decomposition-based prior-guided optical tomography for enhancing DOT image quality. We conjectured that the 3CB prior would lead to improvement of the spatial resolution and also of the contrast of the reconstructed tumor image, particularly for the dense breasts. We conducted a Monte-Carlo simulation to acquire dual-energy X-ray projections of a realistic 3D numerical breast phantom and performed digital breast tomosynthesis (DBT) for setting up a 3CB model. The 3CB prior was then used as a structural guide in DOT image reconstruction. The proposed method resulted in the higher spatial resolution of the recovered tumor even when the tumor is surrounded by the fibroglandular tissues compared with the typical two-composition-prior method or the standard Tikhonov regularization method. (c) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要