Flg22-induced Ca2+ increases undergo desensitization and resensitization

PLANT CELL AND ENVIRONMENT(2021)

引用 9|浏览23
暂无评分
摘要
The flagellin epitope flg22, a pathogen-associated molecular pattern (PAMP), binds to the receptor-like kinase FLAGELLIN SENSING2 (FLS2), and triggers Ca2+ influx across the plasma membrane (PM). The flg22-induced increases in cytosolic Ca2+ concentration ([Ca2+](i)) (FICA) play a crucial role in plant innate immunity. It's well established that the receptor FLS2 and reactive oxygen species (ROS) burst undergo sensitivity adaptation after flg22 stimulation, referred to as desensitization and resensitization, to prevent over responses to pathogens. However, whether FICA also mount adaptation mechanisms to ensure appropriate and efficient responses against pathogens remains poorly understood. Here, we analysed systematically [Ca2+](i) increases upon two successive flg22 treatments, recorded and characterized rapid desensitization but slow resensitization of FICA in Arabidopsis thaliana. Pharmacological analyses showed that the rapid desensitization might be synergistically regulated by ligand-induced FLS2 endocytosis as well as the PM depolarization. The resensitization of FICA might require de novo FLS2 protein synthesis. FICA resensitization appeared significantly slower than FLS2 protein recovery, suggesting additional regulatory mechanisms of other components, such as flg22-related Ca2+ permeable channels. Taken together, we have carefully defined the FICA sensitivity adaptation, which will facilitate further molecular and genetic dissection of the Ca2+-mediated adaptive mechanisms in PAMP-triggered immunity.
更多
查看译文
关键词
Ca2+ signalling, FLS2, PAMP, receptors, sensitivity adaptation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要