Circuit Complexity in $\mathcal{Z}_{2}$ ${\cal EEFT}$

arxiv(2022)

引用 2|浏览0
暂无评分
摘要
Motivated by recent studies of circuit complexity in weakly interacting scalar field theory, we explore the computation of circuit complexity in $\mathcal{Z}_2$ Even Effective Field Theories ($\mathcal{Z}_2$ EEFTs). We consider a massive free field theory with higher-order Wilsonian operators such as $\phi^{4}$, $\phi^{6}$ and $\phi^8.$ To facilitate our computation we regularize the theory by putting it on a lattice. First, we consider a simple case of two oscillators and later generalize the results to $N$ oscillators. The study has been carried out for nearly Gaussian states. In our computation, the reference state is an approximately Gaussian unentangled state, and the corresponding target state, calculated from our theory, is an approximately Gaussian entangled state. We compute the complexity using the geometric approach developed by Nielsen, parameterizing the path ordered unitary transformation and minimizing the geodesic in the space of unitaries. The contribution of higher-order operators, to the circuit complexity, in our theory has been discussed. We also explore the dependency of complexity with other parameters in our theory for various cases.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要