Growth of entanglement entropy under local projective measurements

PHYSICAL REVIEW B(2022)

引用 22|浏览3
暂无评分
摘要
Nonequilibrium dynamics of many-body quantum systems under the effect of measurement protocols is attracting an increasing amount of attention. It has been recently revealed that measurements may induce an abrupt change in the scaling law of the bipartite entanglement entropy, thus suggesting the existence of different nonequilibrium regimes. However, our understanding of how these regimes appear and whether they survive in the thermodynamic limit is much less established. Here we investigate these questions on a one-dimensional quadratic fermionic model: this allows us to reach system sizes relevant in the thermodynamic sense. We show that local projective measurements induce a qualitative modification of the time growth of the entanglement entropy which changes from linear to logarithmic. However, in the stationary regime, the logarithmic behavior of the entanglement entropy does not survive in the thermodynamic limit and, for any finite value of the measurement rate, we numerically show the existence of a single area-law phase for the entanglement entropy. Finally, exploiting the quasiparticle picture, we further support our results by analyzing the fluctuations of the stationary entanglement entropy and its scaling behavior.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要