Instant Hydrogelation Encapsulates Drugs Onto Implants Intraoperatively Against Osteoarticular Tuberculosis

JOURNAL OF MATERIALS CHEMISTRY B(2021)

引用 0|浏览16
暂无评分
摘要
Osteoarticular Tuberculosis (TB) is a challenging issue because of its chronicity and recurrence. Many drug delivery systems (DDSs) have been developed for general chemotherapy. Herein, we take advantage of instant hydrogelation to in situ encapsulate drugs onto implants intraoperatively, optimizing the drug release profile against osteoarticular TB. First-line chemodrugs, i.e. rifampicin (RFP) and isoniazid (INH) are firstly loaded on tricalcium phosphate (TCP). Then, the encapsulating hydrogel is fabricated by dipping in chitosan (CS) and beta-glycerophosphate (beta-GP) solution and heating at 80 degrees C for 40 min. The hydrogel encapsulation inhibits explosive drug release initially, but maintains long-term drug release (INH, 158 days; RFP, 53 days) in vitro. Therefore, this technique could inhibit bone destruction and inflammation from TB effectively in vivo, better than our previous ex situ prepared DDSs. The encapsulating technology, i.e. instant hydrogelation of drug-loaded implants, shows potential for regulating the type and ratio of drugs, elastic and viscous modulus of the hydrogel according to the state of illness intraoperatively for optimal drug release.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要