Magnetic domain wall motion driven by an acoustic wave

Ultrasonics(2022)

引用 3|浏览15
暂无评分
摘要
Dynamic interaction of acoustic and magnetic systems is of strong current interest, triggered by the promises of almost lossless new concepts of magnet-based information technology. In such concepts, a significant role is often given to domain walls (DW). Therefore, here we investigate how launching an acoustic shear wave, we can control the DW motion. Surprisingly, at sufficiently large amplitudes of the shear displacement, the speed of the forced DW motion can reach sizeable fraction of the speed of sound. This was shown to happen due to certain resonance conditions depending on the wave frequency, its angle of incidence, and shear displacement amplitudes, leading to a total reflection of the wave and maximizing the impact. Most interesting, strong nonlinearity appears in the interaction of the elastic and magnetic subsystems, expressed by the negative slope of the resonant reflection peak and the s-shaped dependence of the domain wall velocity on the shear displacement amplitude, typical for nonlinear systems.
更多
查看译文
关键词
Domain wall,Acoustic waves,Spin waves
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要