Pressure-Induced Reconstructive Phase Transitions, Polarization With Metallicity, And Enhanced Hardness In Antiperovskite Mgcni3

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2021)

引用 0|浏览6
暂无评分
摘要
In general, hydrostatic pressure can suppress electrical polarization, instead of creating and/or enhancing polarization like strain engineering. Here, a combination of first-principles calculations and CALYPSO crystal structures prediction is used to point out that hydrostatic pressure applied on antiperovskite MgCNi3 can stabilize polarization with metallicity, and thus a polar metal can exist under high pressure. Strikingly, the metallic polar phase of MgCNi3 exhibits an original linear-cubic coupling between polar and nonpolar modes, resulting in an asymmetrical double-well when the polarization is switched. Moreover, another novel phase of MgCNi3 under high pressure possesses an enhanced hardness stemming from a robust s-s electrons interaction of an unexpected C-C bond, rather than typical sp(3) orbital hybridization. These discoveries open new routes to design superhard materials and polar metals.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要