Novel Electrophilic Warhead Targeting a Triple-Negative Breast Cancer Driver in Live Cells Revealed by "Inverse Drug Discovery"

JOURNAL OF MEDICINAL CHEMISTRY(2021)

引用 7|浏览25
暂无评分
摘要
The "inverse drug discovery" strategy is a potent means of exploring the cellular targets of latent electrophiles not typically used in medicinal chemistry. Cyclopropenone, a powerful electrophile, is generally used in bio-orthogonal reactions mediated by triarylphosphine or in photo-triggered cycloaddition reactions. Here, we have studied, for the first time, the proteome reactivity of cyclopropenones in live cells and discovered that the cyclopropenone warhead can specifically and efficiently modify a triplenegative breast cancer driver, glutathione S-transferase pi-1 (GSTP1), by covalently binding at the catalytic active site. Further structure optimization and signaling pathway validation have led to the discovery of potent inhibitors of GSTP1.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要