Electron-phonon coupling and quantum correction to topological magnetoconductivity in Bi2GeTe4

PHYSICAL REVIEW B(2022)

引用 8|浏览9
暂无评分
摘要
We report structure, vibrational properties, and weak antilocalization-induced quantum correction to magnetoconductivity in single-crystal Bi2GeTe4. Surface band-structure calculations show a single Dirac cone corresponding to topological surface states in Bi2GeTe4. An estimated phase coherence length, l phi similar to 143 nm and prefactor alpha similar to-1.54 from Hikami-Larkin-Nagaoka fitting of magnetoconductivity describe the quantum correction to conductivity. An anomalous temperature dependence of A1g Raman modes confirms enhanced electron-phonon interactions. Our results establish that electrons of the topological state can interact with the phonons involving the vibrations of Bi-Te in Bi2GeTe4.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要