谷歌浏览器插件
订阅小程序
在清言上使用

Role of Human Primary Renal Fibroblast in TGF-β1-Mediated Fibrosis-Mimicking Devices.

International journal of molecular sciences(2021)

引用 3|浏览19
暂无评分
摘要
Renal fibrosis is a progressive chronic kidney disease that ultimately leads to end-stage renal failure. Despite several approaches to combat renal fibrosis, an experimental model to evaluate currently available drugs is not ideal. We developed fibrosis-mimicking models using three-dimensional (3D) co-culture devices designed with three separate layers of tubule interstitium, namely, epithelial, fibroblastic, and endothelial layers. We introduced human renal proximal tubular epithelial cells (HK-2), human umbilical-vein endothelial cells, and patient-derived renal fibroblasts, and evaluated the effects of transforming growth factor-β (TGF-β) and TGF-β inhibitor treatment on this renal fibrosis model. The expression of the fibrosis marker alpha smooth muscle actin upon TGF-β1 treatment was augmented in monolayer-cultured HK-2 cells in a 3D disease model. In the vascular compartment of renal fibrosis models, the density of vessels was increased and decreased in the TGF-β-treated group and TGF-β-inhibitor treatment group, respectively. Multiplex ELISA using supernatants in the TGF-β-stimulating 3D models showed that pro-inflammatory cytokine and growth factor levels including interleukin-1 beta, tumor necrosis factor alpha, basic fibroblast growth factor, and TGF-β1, TGF-β2, and TGF-β3 were increased, which mimicked the fibrotic microenvironments of human kidneys. This study may enable the construction of a human renal fibrosis-mimicking device model beyond traditional culture experiments.
更多
查看译文
关键词
renal fibroblast,fibrosis,TGF-β1
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要