An interpenetrating and patternable conducting polymer hydrogel for electrically stimulated release of glutamate

Acta Biomaterialia(2022)

引用 17|浏览16
暂无评分
摘要
Recent advances in drug delivery have made it possible to release bioactive agents from neural implants specifically to local tissues. Conducting polymer coatings have been explored as a delivery platform in bioelectronics, however, their utility is restricted by their limited loading capacity and stability. This study presents the fabrication of a stable conducting polymer hydrogel (CPH), comprising the hydrogel gelatin methacrylate (GelMA), and conducting polymer polypyrrole (PPy) for the electrically controlled delivery of glutamate (Glu). The hybrid GelMA/PPy/Glu can be photolithographically patterned and covalently bonded to an electrode. Fourier-transform infrared (FTIR) analysis confirmed the interpenetrating nature of PPy through the GelMA hydrogels. Electrochemical polymerisation of PPy/Glu through the GelMA hydrogels resulted in a significant increase in the charge storage capacity as determined by cyclic voltammetry (CV). Long-term electrochemical and mechanical stability was demonstrated over 1000 CV cycles and extracts of the materials were cytocompatible with SH-SY5Y neuroblastoma cell lines. Release of Glu from the CPH was responsive to electrical stimulation with almost five times the amount of Glu released upon constant reduction (-0.6 V) compared to when no stimulus was applied. Notably, GelMA/PPy/Glu was able to deliver almost 14 times higher amounts of Glu compared to conventional PPy/Glu films. The described CPH coatings are well suited in implantable drug delivery applications and compared to conducting polymer films can deliver higher quantities of drug in response to mild electrical stimulus.
更多
查看译文
关键词
Conducting polymer hydrogel,Bioelectronics,Electrically responsive drug delivery,Surface attachment,Implantable drug delivery,Polypyrrole,Gelatin methacrylate (GelMA)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要