Muscle repair after physiological damage relies on nuclear migration for cellular reconstruction

SCIENCE(2021)

引用 71|浏览14
暂无评分
摘要
Regeneration of skeletal muscle is a highly synchronized process that requires muscle stem cells (satellite cells). We found that localized injuries, as experienced through exercise, activate a myofiber self-repair mechanism that is independent of satellite cells in mice and humans. Mouse muscle injury triggers a signaling cascade involving calcium, Cdc42, and phosphokinase C that attracts myonuclei to the damaged site via microtubules and dynein. These nuclear movements accelerate sarcomere repair and locally deliver messenger RNA (mRNA) for cellular reconstruction. Myofiber self-repair is a cell-autonomous protective mechanism and represents an alternative model for understanding the restoration of muscle architecture in health and disease.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要