Graphene Confers Ultralow Friction on Nanogear Cogs

SMALL(2021)

引用 14|浏览31
暂无评分
摘要
Friction-induced energy dissipation impedes the performance of nanomechanical devices. Nevertheless, the application of graphene is known to modulate frictional dissipation by inducing local strain. This work reports on the nanomechanics of graphene conformed on different textured silicon surfaces that mimic the cogs of a nanoscale gear. The variation in the pitch lengths regulates the strain induced in capped graphene revealed by scanning probe techniques, Raman spectroscopy, and molecular dynamics simulation. The atomistic visualization elucidates asymmetric straining of C-C bonds over the corrugated architecture resulting in distinct friction dissipation with respect to the groove axis. Experimental results are reported for strain-dependent solid lubrication which can be regulated by the corrugation and leads to ultralow frictional forces. The results are applicable for graphene covered corrugated structures with movable components such as nanoelectromechanical systems, nanoscale gears, and robotics.
更多
查看译文
关键词
frictional force microscopy (FFM), graphene, Raman spectroscopy, strain, textured surface
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要