Transcriptome and Metabolome Analysis Revealed the Freezing Resistance Mechanism in 60-Year-Old Overwintering Camellia sinensis

BIOLOGY-BASEL(2021)

引用 4|浏览4
暂无评分
摘要
The freezing stress during overwintering brings great challenges to the normal growth of Camellia sinensis. The current research on C. sinensis mainly focuses on cold resistance, but less on freezing resistance. In the present study, the transcriptome and metabolome of C. sinensis under freezing stress were studied. Results showed that Pyr/PYL-PP2C-SnRK2 played a critical role in the signal transduction of freezing stress. Three metabolic pathways including phenylpropanoid biosynthesis, flavone and flavonol biosynthesis, and flavonoid biosynthesis contributed to the freezing resistance of C. sinensis. This study provides substantial insights for the breeding of C. sinensis. Freezing stress in winter is the biggest obstacle to the survival of C. sinensis in mid-latitude and high-latitude areas, which has a great impact on the yield, quality, and even life of C. sinensis every year. In this study, transcriptome and metabolome were used to clarify the freezing resistance mechanism of 60-year-old natural overwintering C. sinensis under freezing stress. Next, 3880 DEGs and 353 DAMs were obtained. The enrichment analysis showed that pathways of MAPK and ABA played a key role in the signal transduction of freezing stress, and Pyr/PYL-PP2C-SnRK2 in the ABA pathway promoted stomatal closure. Then, the water holding capacity and the freezing resistance of C. sinensis were improved. The pathway analysis showed that DEGs and DAMs were significantly enriched and up-regulated in the three-related pathways of phenylpropanoid biosynthesis, flavone and flavonol biosynthesis, and flavonoid biosynthesis. In addition, the carbohydrate and fatty acid synthesis pathways also had a significant enrichment, and the synthesis of these substances facilitated the freezing resistance. These results are of great significance to elucidate the freezing resistance mechanism and the freezing resistance breeding of C. sinensis.
更多
查看译文
关键词
transcriptome, metabolome, freezing resistance, substances, pathways
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要