谷歌浏览器插件
订阅小程序
在清言上使用

Toward Laplace MP2 Method Using Range Separated Coulomb Potential and Orbital Selective Virtuals

Journal of chemical physics online/˜The œJournal of chemical physics/Journal of chemical physics(2021)

引用 3|浏览10
暂无评分
摘要
We report the development of a new Laplace MP2 (second-order Møller-Plesset) implementation using a range separated Coulomb potential, partitioned into short- and long-range parts. The implementation heavily relies on the use of sparse matrix algebra, density fitting techniques for the short-range Coulomb interactions, while a Fourier transformation in spherical coordinates is used for the long-range part of the potential. Localized molecular orbitals are employed for the occupied space, whereas orbital specific virtual orbitals associated with localized molecular orbitals are obtained from the exchange matrix associated with specific localized occupied orbitals. The range separated potential is crucial to achieve efficient treatment of the direct term in the MP2, while extensive screening is employed to reduce the expense of the exchange contribution in MP2. The focus of this paper is on controllable accuracy and linear scaling of the data entering the algorithm.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要