Pairwise Reachability Oracles and Preservers Under Failures

International Colloquium on Automata, Languages and Programming (ICALP)(2022)

引用 1|浏览6
暂无评分
摘要
In this paper, we consider reachability oracles and reachability preservers for directed graphs/networks prone to edge/node failures. Let $G = (V, E)$ be a directed graph on $n$-nodes, and $P\subseteq V\times V$ be a set of vertex pairs in $G$. We present the first non-trivial constructions of single and dual fault-tolerant pairwise reachability oracle with constant query time. Furthermore, we provide extremal bounds for sparse fault-tolerant reachability preservers, resilient to two or more failures. Prior to this work, such oracles and reachability preservers were widely studied for the special scenario of single-source and all-pairs settings. However, for the scenario of arbitrary pairs, no prior (non-trivial) results were known for dual (or more) failures, except those implied from the single-source setting. One of the main questions is whether it is possible to beat the $O(n |P|)$ size bound (derived from the single-source setting) for reachability oracle and preserver for dual failures (or $O(2^k n|P|)$ bound for $k$ failures). We answer this question affirmatively.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要